Improving the performance of HMM-based voice conversion using context clustering decision tree and appropriate regression matrix format
نویسندگان
چکیده
To improve the performance of the HMM-based voice conversion system in which the LSP coefficient is introduced as the spectral representation, a model clustering technique to tie HMMs into classes for the model adaptation, considering the phonetic and linguistic contextual factors of HMMs, is adopted in this paper. Besides, due to the relationship between the LSP coefficients of adjacent orders, an appropriate format of the regression matrix is suggested according to the small amount of the adaptation training data. Subjective and objective tests prove that the source HMMs can be adapted more accurately using the proposed method, meanwhile the synthetic speech generated from the adapted model has better discrimination and speech quality.
منابع مشابه
Using Context-based Statistical Models to Promote the Quality of Voice Conversion Systems
This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...
متن کاملImproving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملA Context Clustering Technique for Average Voice Models
This paper describes a new context clustering technique for average voice model, which is a set of speaker independent speech synthesis units. In the technique, we first train speaker dependent models using multi-speaker speech database, and then construct a decision tree common to these speaker dependent models for context clustering. When a node of the decision tree is split, only the context...
متن کاملImprovement of Tone Intelligibility for Average-Voice-Based Thai Speech Synthesis
Problem statement: Tone intelligibility in speech synthesis is an important attribute that should be taken into account. The tone correctness of the synthetic speech is degraded considerably in the average-voice-based HMM-based Thai speech synthesis. The tying mechanism in the decision tree based context clustering without appropriate criterion causes unexpected tone neutralization. Incorporati...
متن کاملAn investigation of context clustering for statistical speech synthesis with deep neural network
The state-of-the-art DNN speech synthesis system directly maps linguistic input to acoustic output and voice quality improvement over the conventional MSD-GMM-HMM synthesis system has been reported. DNN-based speech synthesis system does not require context clustering as in GMM-HMM systems and this was believed to be the main advantage and contributor to performance improvement. Our previous wo...
متن کامل